Protein-DNA recognition

https://www.rcsb.org/3d-view/1 EFA



Whole Lacl https://www.rcsb.org/3d-view/1 EFA

DNA-binding domain https://www.rcsb.org/3d-view/1L1M

On non-spec DNA https://www.rcsb.org/3d-view/10SL
Model of transition

https://proteopedia.org/wiki/index.php/Lac_repressor



Methods to characterize protein-DNA specificity
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Nobel Prize in Physiology
or Medicine 1965

Photo from the Nobel Foundation Photo from the Nobel Foundation Photo from the Nobel Foundation
archive. archive. archive.

Francois Jacob André Lwoff Jacques Monod

Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physiology or Medicine 1965 was
awarded jointly to Francois Jacob, André Lwoff and
Jacques Monod "for their discoveries concerning
genetic control of enzyme and virus synthesis"



Methods to characterize protein-DNA specificity

SELEX-Seq

SELEX library

Repeat (x3-5)
Randomized sequence (N,,)

: — . Binding/Bead puII down
Adaptor Adaptor \(—,\ P

PCR ampllﬁcatuon

High-throughput
sequencing

Protein expression

Cloning (by IVT) *
Q—e

TF protein of interest

SELEX-Seq schema.




Methods to characterize protein-DNA specificity
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Universal Protein Binding Microarrays

de Bruijn sequence <

In combinatorial mathematics, a de Bruijn sequence
of order n on a size-k alphabet A is a cyclic sequence
in which every possible length-n string on A occurs

BULYK

exactly once as a substring. Wikipedia

LABORATORY



ChIP-seq

N [ =\
288 BRVAN
/

* Cross-link protein to DNA

=

Use antibodies to pull down target
of interest!

7

N e\
Related techniques: %U /5 \
* ChlIP-exo

* CUT&RUN (no X-linking) | oo

- y
= PR
X -
> !
- cell lysate
A Point sources C%CF Add bead-attached antibodies

to immunoprecipitate
target protein

¥ a
. AR
L ] i /
" — X

7 —100s of base pairs —{ > &%, '_ W
Broad sources 9 L

H3K27me3
H3K9me3 prec-pltate

H3K36me3 )Q
—100s of kilobases —— j: ‘ ;

MYC
H3K4me3

2
£
g Mixed sources eg. ’ unlink protein; purify DNA
€ RNA Pol Il
: sUZ12 Y
£ R
5 ( N\ 7 Cr -
c .
« , sequencing 4
—10s of kilobases —— / / - map to genome
Chromosome position > ATG_(TGAC(GIG

https://www.nature.com/articles/nrg3642 wikipedia



DNase | hypersensitive sites (DHS)

nucleosome-free
enhancer region

DNase | hypersensitive sites

nucleosome
nucleosome-free o cition region
promoter region

transcription

Fig. 1. DHSs within chromatin (Wang et al., 2012).
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Inference of e(i,a) using
expectation maximization

Precise physical models of protein—-DNA interaction
from high-throughput data

Justin B. Kinney, Gasper Tkacik, and Curtis G. Callan, Jr.*
Physics Department and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544

Contributed by Curtis G. Callan, Jr., November 8, 2006 (sent for review September 30, 2006)

Vol. 22 no. 14 2006, pages e141-e149
doi: 10.1093/bioinformatics/btl223

Statistical mechanical modeling of genome-wide transcription
factor occupancy data by MatrixREDUCE

Barrett C. Foat', Alexandre V. Morozov? and Harmen J. Bussemaker

"Department of Biological Sciences, Columbia University, New York, NY 10027, USA, %Center for Studies in
Physics and Biology, The Rockefeller University, New York, NY 10021, USA and 3Center for
Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
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A Systems Approach to Measuring
the Binding Energy Landscapes of
Transcription Factors

Sebastian ). Maerkl™ and Stephen R. Quake”

SCIENCE VOL 37%

12 JANUARY 2007
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Fig. 2. Binding affinities of C-terminally tagged TFs MAX iso A (A), MAX iso B (B), Pho4p (C), and
Cbflp (D) to all sequence permutations of N_, to N_;. Sequences N_; to N_, are plotted on the
category axis, with the fourth base, N_,, displayed as clusters of four columns per category. (E and
F) Comparisons of predicted changes in the Gibbs free energy (AAG) against measured values for
MAX isoforms A and B are shown, respectively. All predicted values were calculated from PWMs
assuming base independence.

A Systems Approach to Measuring
the Binding Energy Landscapes of
Transcription Factors

Sebastian ). Maerkl™” and Stephen R. Quake”*

SCIENCE VOL 375 12 JANUARY 2007



Non-specific binding

Protein—DNA binding in the absence of specific
base-pair recognition

Ariel Afek®, Joshua L. Schipper®, John Horton®, Raluca Gordan®’, and David B. Lukatsky®'

3Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 8410501 Israel; and PCenter for Genomic and Computational Biology,
Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708

énal);sis. Firs;[, the pr'esence of the specific motif leads statistically,
on average, to at most ~ —2 kg7 free-energy difference compared
with the negative control. Second, the magnitude of the identified

a - - - ~a

~1 KT per bp

Measured Free Energy (MITOMI): AAG (kgT)

Measured Free Energy (PBM): AAG (kgT)



Non-specific binding

https://www.rcsb.org/3d-view/10OSL
https://www.rcsb.org/3d-view/1L1M



Information
theory



How much information do you need?

To find an object among N decoys
Need at least: log,N bits




How much information do you need?

To find an object among N decoys
Need at least: | . =log,N bits

?

crobes  N=1067 | = 20-23 bits

Multicell euk N=108-10 | _=27-33 bits
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How much information 1s contained in a motifs

- Conserved position = 2 bits 5
- T or C are equally likely = 1bit i
- more generally: 5
6

= Y plog,|p(0/gx) | e
x=AT,G,C 1?)

where p(x) is the frequency of x 11
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How much information 1s contained in a motifs

ATTCG
ATGGG EDnOdVi\/: sites
ATGCG o
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Results

We analyzed 969 TF motifs
- calculate their Information Contents 1
- compare to I,,;, Bacteria ~ N=1067 | . = 20-23 bits
Yeast N=107 [, = 24 bits
Multicell euk N=108-10|/ . = 27-33 bits

Im

Bacteria: 20-25 bits
Yeast: 14 bits

4

Multicell eukaryotes: |12 bits

Trends Genet. 2009 Oct;25(10):434-40. doi: 10.1016/j.tig.2009.08.003. Epub 2009 Oct 6.

Different gene regulation strategies revealed by analysis of binding motifs.
Wunderlich Z1, Mirny LA.
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Examples

Bacteria: 26 bits Eukaryotes: 12-14 bits

12 Lambda <l and cro binding sites 8 Lambda O protein binding sites

Cbf1 (S. cerevisiae bHLH)

- xTCACGTbAIM

2 3 4 7 8 9 10 11 12 13 14
Zif268 (M. musculus C,H, zinc finger)
€ P‘ _,4’»’/“3
Frewtoaterdoenen o P G‘~\§
. 58 CRP binding sites I(’ii TA \us? ’"“‘Q‘ e
Literature consensus: GCGKGGGCG
Tasts 1 TAuA !
U T A e s e e e e o l'-“'-"""’-"'-"“'-“"“""‘"‘""-‘-l Ceh-22 (C. elegans NK homeodomain)
S ’13 FINR binding snei -
. N _ CACTT=A
o_'& é I T T Literature consensus: CACTNNA
=%= .,..‘:ZNIIIII.. mgiey gy

Oct-1 (H. sapiens POU homeodomain)

~TATGCAXA-

Literature consensus: ATGCAAAT



Information deficiency => binding decoys

Prob of a hits (mistake) = 2 ~ 1
Number of hits per genome = N2_ / — 2 Finin =1
I.-I Number of hits
Bacteria: ~0 bits ~1 per genome
Multicell eukaryotes: 18 bits ~104-106 per genome

A

assuming 90% chromatinized DNA

Trends Genet. 2009 Oct;25(10):434-40. doi: 10.1016/j.tig.2009.08.003. Epub 2009 Oct 6.

Different gene regulation strategies revealed by analysis of binding motifs.
Wunderlich Z1, Mirny LA.




Cell Biology

» Widespread non-functional binding
* Binding # gene expression
» Carefully interpret experimental data

Expected spurious binding ~20% of promoter fro any TF.

ChlIP-on-chip significance analysis reveals large-scale
binding and regulation by human transcription
factor oncogenes

Adam A. MargolinaP.<1, Teresa Palomerode, Pavel Sumazin®, Andrea Califano®t.9.23, Adolfo A. Ferrandod-ef23,
and Gustavo Stolovitzkyb<23

MYC binds 48% of all promoters, (!!1)
NOTCH1 19%,
HES1 18%.




Cell Biology

» Widespread non-functional binding
* Binding # gene expression
» Carefully interpret experimental data

Need cluster of site to specify a genomic region

In a region of 1 kb composed of the sites of 3-10 different
TFs, we calculate n./ ser = 10-20 sites. This lower limit on
the number of required binding sites is remarkably con-
sistent with the mean of ~20 sites per 1 kb observed in fly
developmental enhancers [28].

OO ® o

~1Kb need ~10-20 sites




Significant evolutionary flexibility
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Genome Biology 2004, 5:R61

Computational identification of developmental enhancers:
conservation and function of transcription factor binding-site
clusters in Drosophila melanogaster and Drosophila pseudoobscura
Benjamin P Berman*", Barret D Pfeiffer®", Todd R Laverty”,

Steven L Salzberg$, Gerald M Rubin™*, Michael B Eisen*" ™ and

Susan E Celniker*"
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Figure 2. Comparison of binding profiles of BCD, GT, HB and KR at the even-skipped locus in the four species D.melanogaster,
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Extensive Divergence of Transcription Factor Binding in
Drosophila Embryos with Highly Conserved Gene

Expression

Mathilde Paris'*, Tommy Kaplan'~, Xiao Yong L

Michael B. Eisen'***

September 2013 | Volume 9 | ssue 9 | e1003748
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Jacqueline E. Villalta®, Susan E. Lott™*,



Significant evolutionary flexibility

Abstract

To better characterize how variation in requlatory sequences drives divergence in gene expression, we underook a
systematic study of transcription factor binding and gene expression in blastoderm embryos of four species, which sample
much of the diversity in the 40 millicn-year old genus Drosophila: D. melanogoster, D. yokuba, D. pseudoobscura and D. wirilis.
We compared gene expression, measured by mRNA-seq, to the genome-wide binding, measured by ChiP-seq, of four
transcription factors involved in early anmerior-posternior patterning. We found that mRNA levels are much better conserved
than individual transcription factor binding events, and that changes in a gene's expression were poorly explained by
changes in adjacent transcription factor binding. However, highly bound sites, sites in regions bound by multiple factors
and sites near genes are conserved more frequently than other binding, suggesting that a considerable amount of
transcription factor binding is weakly or non-functional and not subject to purifying selection.

OPEN () ACCESS Freely available online @ PLOS |cenencs

Extensive Divergence of Transcription Factor Binding in
Drosophila Embryos with Highly Conserved Gene
Expression

Mathilde Paris'*, Tommy Kaplan"’, Xiao Yong Li'?, Jacqueline E. Villalta®, Susan E. Lott™*,
Michael B. Eisen'***

September 2013 | Volume 9 | ssue 9 | e1003748



Significant evolutionary flexibility

Graphical Abstract

TF binding evolution in closely related mammals
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Cooperativity and Rapid Evolution
of Cobound Transcription Factors
in Closely Related Mammals

Klara Stefflova,’* David Thybert, =" Michael D. Wilson,” lan Streeter,” Jelena Aleksic,** Panagiota Karagianni,*
Alvis Brazma,® David J. Adams,’ lannis Talianidis,* John C. Marioni,” Paul Flicek,*"* and Duncan T. Odom'-"*

Call 154, 530-540, August 1, 2013 ©2013



Transcription factors
and promoters

Eukaryotes
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Few protein-protein interactions

An Atomic Model of the
Interferon-3 Enhanceosome

Daniel Panne,’ Tom Maniatis,? and Stephen C. Harrison'*



Clusters of regulatory motifs
seen by DHS footprinting
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Article

Low overlap of transcriptionfactor DNA
binding and regulatory targets
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% Check for updates

DNA sequence-specific transcription factors (TFs) modulate transcription and
chromatin architecture, acting from regulatory sites in enhancers and promoters

of eukaryotic genes"?. How multiple TFs cooperate to regulate individual genes is
still unclear. Inyeast, most TFs are thought to regulate transcription viabinding

to upstream activating sequences, which are situated within a few hundred base
pairs upstream of the regulated gene’. Although this model has been validated for
individual TFs and specific genes, it has not been tested in a systematic way. Here we
integrated information on the binding and expression targets for the near-complete
set of yeast TFs and show that, contrary to expectations, there are few TFs with dedicated
activator or repressor roles, and that most TFs have a dual function. Although nearly
all protein-coding genes are regulated by one or more TFs, our analysis revealed
limited overlap between TF binding and gene regulation. Rapid depletion of many
TFsalsorevealed many regulatory targets that were distant from detectable TF
binding sites, suggesting unexpected regulatory mechanisms. Our study providesa
comprehensive survey of TF functions and offers insights into interactions between
the set of TFs expressed in asingle cell type and how they contribute to the complex
programme of gene regulation.
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